Unsupervised Clustering-based SPITters Detection Scheme
نویسندگان
چکیده
منابع مشابه
Unsupervised Clustering-based SPITters Detection Scheme
VoIP/SIP is taking place of conventional telephony because of very low call charge but it is also attractive for SPITters who advertise or spread phishing calls toward many callees. Although there exist many feature-based SPIT detection methods, none of them provides the flexibility against multiple features and thus complex threshold settings and training phases cannot be avoided. In this pape...
متن کاملRough Clustering Based Unsupervised Image Change Detection
This paper introduces an unsupervised technique to detect the changed region of multitemporal images on a same reference plane with the help of rough clustering. The proposed technique is a soft-computing approach, based on the concept of rough set with rough clustering and Pawlak’s accuracy. It is less noisy and avoids pre-deterministic knowledge about the distribution of the changed and uncha...
متن کاملWatershed-Based Unsupervised Clustering
In this paper, a novel general purpose clustering algorithm is presented, based on the watershed algorithm. The proposed approach defines a density function on a suitable lattice, whose cell dimension is carefully estimated from the data. The clustering is then performed using the well-known watershed algorithm, paying particular attention to the boundary situations. The main characteristic of ...
متن کاملA Clustering-Based Unsupervised Approach to Anomaly Intrusion Detection
In the present paper a 2-means clustering-based anomaly detection technique is proposed. The presented method parses the set of training data, consisting of normal and anomaly data, and separates the data into two clusters. Each cluster is represented by its centroid one of the normal observations, and the other for the anomalies. The paper also provides appropriate methods for clustering, trai...
متن کاملUnsupervised Change Detection by Kernel Clustering
This paper presents a novel unsupervised clustering scheme to find changes in two or more coregistered remote sensing images acquired at different times. This method is able to find nonlinear boundaries to the change detection problem by exploiting a kernel-based clustering algorithm. The kernel k-means algorithm is used in order to cluster the two groups of pixels belonging to the ‘change’ and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information Processing
سال: 2015
ISSN: 1882-6652
DOI: 10.2197/ipsjjip.23.81